Note on Conjectures of Bondage Numbers of Planar Graphs
نویسندگان
چکیده
The bondage number of a graph G is the cardinality of a smallest set of edges whose removal results in a graph with domination number larger than that of G. The bondage number measures to some extent the robustness of a network with respect to link failure. This note mainly considers some conjectures on the bondage number of a planar graph, and shows limitations of known methods and presents some new approaches to the conjectures by investigating the effects of edge deletion and contraction on the bondage number. Mathematics Subject Classification: 05C69
منابع مشابه
The bondage numbers of graphs with small crossing numbers
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number (G) ofG. Kang andYuan proved b(G) 8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results ...
متن کاملOn Bondage Numbers of Graphs: A Survey with Some Comments
The domination number of a graph G is the smallest number of vertices which dominate all remaining vertices by edges of G. The bondage number of a nonempty graphG is the smallest number of edges whose removal fromG results in a graph with domination number greater than the domination number of G. The concept of the bondage number was formally introduced by Fink et al. in 1990. Since then, this ...
متن کاملOn the bondage number of planar and directed graphs
The bondage number b(G) of a nonempty graph G is defined to be the cardinality of the smallest set E of edges of G such that the graph G − E has domination number greater than that of G. In this paper we present a simplified proof that b(G) ≤ min{8,∆(G) + 2} for all planar graphs G, give examples of planar graphs with bondage number 6, and bound the bondage number of directed graphs.
متن کاملThe Bondage Number of Graphs with Crossing Number Less than Four
The bondage number b(G) of a graph G is the smallest number of edges whose removal results in a graph with domination number greater than the domination number of G. Kang and Yuan [Bondage number of planar graphs. Discrete Math. 222 (2000), 191198] proved b(G) 6 min{8,∆+ 2} for every connected planar graph G, where ∆ is the maximum degree of G. Later Carlson and Develin [On the bondage number o...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کامل